Phương trình đường ELIP

Đây là phần 52 of 103 trong Series Toán lớp 10

Phương trình đường ELIP

1. Định nghĩa :

đường ELIP là tập hợp các điểm M(x,y) sao cho tổng khoảng cách từ M đến hai điểm F1 và F2là một số không đổi 2a.

(E) : MF1 + MF2 = 2a và F1F2 = 2c.

2. Phương trình chính tắc đường ELIP:

(E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1  với : a2 – b2 = c2.

Đoạn thẳng A1A2 : trục lớn của (E) với A1(-a, 0), A2(a, 0).

Đoạn thẳng B1B2 : trục nhỏ của (E) với B1(0, -b), A2(0, b).

Hai tiêu điểm : F1(-c, 0), F2(c, 0).

===========================================

BÀI TẬP SGK CƠ BẢN :

BÀI 1.a TRANG 88 :

Xác định độ dài các trục, tọa độ các tiêu điểm, tọa độ các đỉnh của elip : (E) : \frac{x^2}{25^2} +\frac{y^2}{9^2} =1

Giải.

  • a2 = 25 => a = 5.
  • b2 = 9 => b = 3
  • c2 = a2 – b2 = 25 – 9 = 16 => c = 4.

tọa độ các đỉnh : A1(-5, 0), A2(5, 0), B1(0, -3), B2(0, 3).

độ dài các trục lớn : A1A2 = 2a = 10.

độ dài các trục nhỏ : B1B2 = 2b = 6.

Hai tiêu điểm : F1(-4, 0), F2(4, 0).

————————————————————————————————-

BÀI 2 TRANG 88 :

Lập phương trình Elip (E) :

  1. độ dài các trục lớn và độ dài các trục nhỏ là 8 và 6.
  2. độ dài các trục lớn là 10  và tiệu cự bằng 6.

Giải.

độ dài các trục lớn : A1A2 = 2a = 8. => a = 4

độ dài các trục nhỏ : B1B2 = 2b = 6. => b = 3

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

Hay : \frac{x^2}{16} +\frac{y^2}{9} =1

độ dài các trục lớn :  A1A2 = 2a = 10  => a = 5

và tiệu cự bằng F1F2 = 2c = 6. => c = 3

ta có :c2 = a2 – b2 => b2= a2 – c2= 25 – 9 = 16 => b = 4.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

Hay : \frac{x^2}{25} +\frac{y^2}{16} =1

————————————————————————————————-

BÀI 3 TRANG 88 :

Lập phương trình Elip (E) :

  1. (E) đi qua M(0; 3) và N(3; -12/5).
  2. (E) đi qua M(1 ; \frac{\sqrt{3}}{2}) và có một tiệu điểm F(\sqrt{3}; 0).

Giải.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy :   (E) : \frac{x^2}{4} +\frac{y^2}{1} =1

Series Navigation<< Phương pháp giải toán hình học trên tọa độ OxyPhương trình đường tròn >>