Các hệ thức lượng trong tam giác và giải tam giác

Đây là phần 55 of 109 trong Series Toán lớp 10

Các hệ thức lượng trong tam giác Và giải tam giác

1. Các công thức trong tam giác vuông :

Cho ΔABC vuông tại A :

  1. BC2 = AC2 + AB2
  2. AB2 = BC.BH; AC2 = BC.CH
  3. AH2 = HB.HC
  4. BC.AH = AB.AC
  5. \frac{1}{AH^2}=\frac{1}{AB^2} +\frac{1}{AC^2}
  6. AC = BC.sin B = BC.cos C = AB.tan B = AB.cotg C.
  7. AB = BC.sin C = BC.cos B  = AC. tan C = AC.cotg B

2. Các công thức trong tam giác thường :

2.1 Định lí hàm cos : BC2 = AC2 + AB2 – 2AB.AC.cosA

Công thức :

  • a2 = b2 + c2 – 2bccosA.
  • b2 = a2 + c2 – 2accosB.
  • c2 = b2 + a2 – 2abcosC.

Hệ quả : (tính góc tam giác )

  • cosA=\frac{b^2+c^2-a^2}{2bc}
  • cosB=\frac{a^2+c^2-b^2}{2ac}
  • cosC=\frac{b^2+ a^2- c^2}{2ab}

Công thức tính đường trung tuyến :

  • m_a^2=\frac{2(b^2+c^2)-a^2}{4}
  • m_b^2=\frac{2(a^2+c^2)- b^2}{4}
  • m_c^2=\frac{2(b^2+ a^2)- c^2}{4}

3. Định lí hàm sin :

a/sinA = b/sinB = c/sinC = 2R

4. Công thức tính diện tích tam giác : (2p = a + b + c)

  • S=\frac{1}{2}ab.sinC=\frac{1}{2}ac.sinB =\frac{1}{2}bc.sinA
  •  S=\frac{abc}{4R}
  • S = pr
  • \sqrt{p(p-a)(p-b)(p-c)} (công thức Hê-rông).

===========================================

BÀI TẬP SGK :

BÀI 1 TRANG 59 SGK CB :

Cho tam giác ABC vuông tại A, cạnh a = 72cm , góc B = 580. Tính góc C, cạnh b, c và đường cao ha.

Giải.

Ta có : \widehat{B}+ \widehat{C}=90^0  (tam giác ABC vuông tại A)

=>\widehat{C}=90^0 -58^0=32^0

Cạnh : b = a.sinB = 72.sịn580 =  61,06cm.

c = a.sinC = 72.sịn320 =  38,16cm.

đường cao ha : a. h= bc => ha  = 32,36cm.

———————————————————————————————————————————

BÀI 6 TRANG 59 SGK CB :

Cho tam giác ABC có cạnh a = 8cm, b = 10cm, c = 13cm.

  1. Tam giác có góc tù không ?
  2. tính đường trung tuyến AM của tam giác ABC.

Giải.

Ta có a < b < c => \widehat{A}< \widehat{B} < \widehat{C}.

cosC=\frac{10^2+ 8^2- 13^2}{2.8.10}=-0.031 => C = 91047′ > 900=> \widehat{C} là góc tù.

Vậy : Tam giác có góc tù.

đường trung tuyến  AM : m_a^2=\frac{2(b^2+c^2)-a^2}{4}=\frac{2(10^2+13^2)-8^2}{4}=118,5

=>MA = 10,89cm

———————————————————————————————————————————

BÀI 8 TRANG 59 SGK CB :

Cho tam giác ABC có cạnh a = 137,5cm, \widehat{B}=83^0 và\widehat{C}=57^0. Tính \widehat{A},   bán kính đường tròn ngoại tiếp R, cạnh b, c.

Giải.

Ta có : \widehat{A} +\widehat{B}+ \widehat{C}=180^0

=>\widehat{A} =180^0-83^0 -57^0= 40^0

Theo Định lí hàm sin : a/sinA = b/sinB = c/sinC = 2R

=> \frac{137,3}{sin40} =2R =>R = 106,96cm.

=> b = 2R.sinB = 2. 106,96.sin83 = 212,33cm.

=> c = 2R.sinC = 2. 106,96.sin57 = 179,41cm.

Series Navigation<< Phương trình đường thẳngTìm hiểu về tích vô hướng >>