Đề thi chọn HSG Toán 11 cấp tỉnh 2018 sở GD và ĐT Thanh Hóa

Đây là phần 2 of 11 trong Series Đề thi HSG Toán lớp 11

Đề thi chọn HSG Toán 11 cấp tỉnh 2018 sở GD và ĐT Thanh Hóa

Đề thi chọn HSG Toán 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết.

Trích dẫn Đề thi chọn HSG Toán 11 cấp tỉnh 2018 sở GD và ĐT Thanh Hóa:

+ Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Một điểm M di động trên cạnh đáy BC (M khác B, C). Mặt phẳng (α) đi qua M đồng thời song song với hai đường thẳng SB và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi (α) và tìm vị trí của điểm M để thiết diện đó có diện tích lớn nhất.

+ Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh của lớp 11A, 3 học sinh của lớp 11B và 5 học sinh của lớp 11C thành một hàng ngang. Tính xác suất để không có học sinh của cùng một lớp đứng cạnh nhau.

+ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AM = AN (M, N không trùng với các đỉnh của tam giác). Đường thẳng d1 đi qua A và vuông góc với BN cắt cạnh BC tại H(6/5; -2/3), đường thẳng d2 đi qua M và vuông góc với BN cắt cạnh BC tại K(2/5; 2/3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng đỉnh A thuộc đường thẳng Δ: 5x + 3y + 13 = 0 và có hoành độ dương.

 

Series Navigation<< Đề thi chọn HSG tỉnh Toán 11 năm học 2017 – 2018 sở GD và ĐT Hà TĩnhĐề thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh >>