Phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu trị tuyệt đối, phương trình chứa căn

Đây là phần 11 of 35 trong Series Toán lớp 10

 

Phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu trị tuyệt đối, phương trình chứa căn

A. Lý thuyết về Phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu trị tuyệt đối, phương trình chứa căn

1. Giải và biện luận phương trình dạng ax + b = 0

  • a≠ 0 : (1) có nghiệm duy nhất x = .
  • a = 0; b ≠ 0; (1) vô nghiệm.
  • a=0; b = 0: (1) nghiệm đúng với mọi x ∈ R.
  • Ghi chú: Phương trình ã + b = 0 với a ≠ 0 được gọi là phương trình bậc nhất một ẩn (x)

2. Phương trình bậc hai một ẩn ax2 + bx + c= 0 (a ≠ 0)

∆ = b2 -4ac được gọi là biệt thức của phương trình (2).

+ ∆ > 0 thì (2) có nghiệm phân biệt x1,2 

+ ∆ = 0 thì (2) có 2 nghiệm kép x = -.

+  ∆ < - thì (2) vô nghiệm.

3. Định lí Vi-ét

Nếu phương trình bậc hai ax2 + bx + c= 0 (a ≠ 0) có hai nghiệm x1,  x2 thì 

x+ x= ,  x1x2=.

Đảo lại: Nếu hai số u và v có tổng u + v =S và tích u.v = P thì u, v là các nghiệm của phương trình: x2 - Sx + P = 0.

4. Phương trình chứa dấu giá trị tuyệt đối

Cách giải phương trình chứa ẩn trong dấu giá trị tuyệt đối là đặt các điều kiện xác định để đưa phương trình có dấu giá trị tuyệt đối thành phương trình không dấu giá trị tuyệt đối.

5. Phương trình chứa dấu căn

Để giải phương trình chứa ẩn dưới dấu căn là đặt điều kiện rồi lũy thừa một cách thích hợp hai vế của phương trình để làm mất dấu căn thức.

B. Lý thuyết về Phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu trị tuyệt đối, phương trình chứa căn

Bài 1 trang 62 sgk đại số 10

Bài 1. Giải các phương trình

a)  = ;

b)   + 2;

c)  = 3;

d)  = 2.

Hướng dẫn giải:

a) ĐKXĐ: 

2x + 3 ≠ 0 ⇔ x ≠ - .

Quy đồng mẫu thức rồi khử mẫu thức chung thì được

4(x2 + 3x + 2) = (2x – 5)(2x + 3) => 12x + 8 = - 4x - 15

                                                         =>  x = -  (nhận).

b) ĐKXĐ: x ≠ ± 3. Quy đồng mẫu thức rồi khử mẫu thì được

(2x + 3)(x + 3) - 4(x - 3) = 24 + 2(x-9)

=> 5x = -15 => x = -3 (loại). Phương trình vô nghiệm.

c) Bình phương hai vế thì được: 3x - 5 = 9 => x =  (nhận).

d) Bình phương hai vế thì được: 2x + 5 = 4 => x = - .

Bài 2 trang 62 sgk đại số 10

Bài 2. Giải và biện luận các phương trình sau theo tham số m

a) m(x - 2) = 3x + 1;

b) m2x + 6 = 4x + 3m;

c) (2m + 1)x – 2m = 3x – 2.

Hướng dẫn giải:

a) ⇔ (m – 3)x = 2m + 1.

  • Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
  • Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

  • Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
  • Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
  • Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

  • Nếu m ≠ 1 có nghiệm duy nhất x = 1.
  • Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình

Bài 6 trang 62 sgk đại số 10

Bài 6. Giải các phương trình.

a) |3x – 2| = 2x + 3;

b) |2x -1| = |-5x – 2|;

c) 

d) |2x + 5| = x2 +5x +1.

Hướng dẫn giải:

a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:

(3x – 2)2 = (2x + 3)2 => (3x - 2)2 – (2x + 3)2 = 0

⇔ (3x -2 + 2x + 3)(3x – 2 – 2x – 3) = 0 

=> x1 (nhận), x2 = 5 (nhận)

Tập nghiệm S = {; 5}.

b) Bình phương hai vế:

(2x – 1)2 = (5x + 2)2 => (2x - 1 + 5x + 2)(2x – 1 – 5x – 2) = 0

=> x1 = , x2 = -1.

c) ĐKXĐ: x ≠ , x ≠ -1. Quy đồng rồi khử mẫu thức chung

(x – 1)|x + 1| = (2x – 3)(-3x + 1)

  •  Với x ≥ -1 ta được: x2 – 1 = -6x2 + 11x – 3 => x ;
    x2 = .
  •  Với x < -1 ta được: -x2 + 1 = -6x2 + 11x – 3 => x1 =  (loại vì không thỏa mãn đk x < -1); x2 (loại vì x > -1)

Kết luận: Tập nghiệm S = {}

d) ĐKXĐ: x2 +5x +1 > 0

  • Với x ≥  ta được: 2x + 5 = x2 + 5x + 1
    => x1 = -4 (loại); x2 = 1 (nhận)
  • Với x <  ta được: -2x – 5 = x2 + 5x + 1

=> x1 =-6 (nhận); x2 = -1 (loại).

Kết luận: Tập nghiệm S = {1; -6}

Comments

comments

Series Navigation<< Lý thuyết và bài tập về phương trình Toán lớp 10Lý thuyết và bài tập về phương trình và hệ phương trình bậc nhất nhiều ẩn - Toán lớp 10 >>