- Toán lớp 9 học những gì?
- Lý thuyết và bài tập về Căn bậc hai số học - Toán lớp 9
- Lý thuyết và bài tập liên hệ giữa phép nhân và phép khai phương
- Chương I: Căn Bậc Hai. Căn Bậc Ba Toán sách giáo khoa lớp 9
- Bài 2 bài 3 trang 6 Sách giáo khoa Toán 9 Tập 1 Đại số
- Bài 4 và bài 5 trang 7 Sách giáo khoa Toán lớp 9 Tập 1 Đại số
- Đề kiểm tra Toán 9 Chương 1 Đại Số (Đề 1)
- Chương II. HÀM SỐ BẬC NHẤT
- Bài 2. Hàm số bậc nhất.
- Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
- Bài 4. Đường thẳng song song và đường thẳng cắt nhau.
- Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
- Ôn tập Chương II – Hàm bậc nhất
- Chương III - HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
- Bài 2. Hệ hai phương trình bậc nhất hai ẩn
- Đề kiểm tra Toán 9 Chương 1 Đại Số (Đề 2)
- Đề kiểm tra Toán 9 Chương 1 Đại số (Đề 3)
- Đề kiểm tra Toán 9 Chương 1 Đại số (Đề 4)
- Chương I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG .Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Bài 2. Tỉ số lượng giác của góc nhọn .
- Chương I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG . Bài 3. Bảng lượng giác
- Bài 4 Lý thuyết về một số hệ thức về cạnh và góc trong tam giác vuông
- Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
- Ôn tập Chương I – Hệ thức lượng giác trong tam giác vuông
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 1)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 2)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 3)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 4)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 5)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 6)
- Chương II. ĐƯỜNG TRÒN . Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
- Bài 2. Đường kính và dây của đường tròn
- Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Bài 4. Vị trí tương đối của đường thẳng và đường tròn
- Bài 6. Tính chất của hai tiếp tuyến cắt nhau
- Bài 7+8. Vị trí tương đối của hai đường tròn
- ÔN TẬP CHƯƠNG I
- ÔN TẬP CHƯƠNG I hình học
- ÔN TẬP CHƯƠNG I. Bài tập ( tiếp theo )
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 1)
- Ôn tập chương II : ĐƯỜNG TRÒN
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 2)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 3)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 4)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 5)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 1)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 2)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 3)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 4)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 5)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 6)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 8)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 9)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 10)
- Chương III - GÓC VỚI ĐƯỜNG TRÒN. Bài 1. Góc ở tâm. Số đo cung
- Bài 2. Liên hệ giữa cung và dây
- Bài 3. Góc nội tiếp
- Bài 3. Góc nội tiếp ( Bài tập tiếp )
- Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
- Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung (Bài tập tiếp theo )
- Bài 6. Cung chứa góc
- Bài 7. Tứ giác nội tiếp
- Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
- Bài 9. Độ dài đường tròn, cung tròn
- Bài 9. Độ dài đường tròn, cung tròn ( bài tập tiếp )
- Bài 10. Diện tích hình tròn, hình quạt tròn
- Ôn tập Chương III – Góc với đường tròn
- Ôn tập Chương III – Góc với đường tròn ( tiếp )
- Ôn tập chương 3 (Câu hỏi - Bài tập tiếp )
- BÀI 4 :Giải hệ phương trình bằng phương pháp cộng đại số
- BÀI 5: Giải bài toán bằng cách lập hệ phương trình
- Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
- Ôn tập chương 3; ĐẠI SỐ (Câu hỏi - Bài tập)
- Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn .Bài 1: Hàm số y = ax^2 (a ≠ 0)
- Bài 2: Đồ thị hàm số y = ax^2 (a ≠ 0)
- Bài 3: Phương trình bậc hai một ẩn ax^2+bx+c=0 (a ≠ 0)
- Bài 4. Công thức nghiệm của phương trình bậc hai
- Bài 5. Công thức nghiệm thu gọn
- Bài 6. Hệ thức Vi-ét và ứng dụng
- Bài 7. Phương trình quy về phương trình bậc hai
- Luyện tập trang 56 -57 SGK Toán 9 tập 2
- Lý thuyết và bài tập giải bài toán bằng cách lập phương trình
- Giải bài toán bằng cách lập phương trình (tiếp)
- Ôn tập chương 4 (Câu hỏi - Bài tập) sách giáo khoa lớp 9
- Chương IV: Hình Trụ - Hình Nón - Hình Cầu
- Góc ở tâm. Tìm hiểu về số đo cung, liên hệ giữa dây và cung
- Tìm hiểu về góc nội tiếp trong đường tròn
- Tìm hiểu về trí tương đối của hai đường tròn
- Tổng hợp kiến thức, dạng bài tập toán lớp 9 cơ bản (Phần đại số)
- Tính chất của hai tiếp tuyến cắt nhau
- Vị trí tương đối của đường thẳng với đường tròn. Tiếp tuyến của đường tròn
- Dạng toán tìm căn bậc hai của một số
- Định nghĩa, định lí và tính chất của đường tròn
- Tỉ số lượng giác của góc nhọn trong tam giác
- Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Giải bài toán bằng phương pháp lập phương trình
- Phương trình quy về phương trình bậc 2
- Tìm hiểu về phương trình bậc hai một ẩn số
- Hệ thức Vi-et và ứng dụng của hệ thức.
- Phương pháp giải hệ phương trình bậc 2
- Công thức nghiệm của phương trình bậc 2
- Hàm số bậc nhất
- Giải một bài toán bằng cách lập hệ phương trình
- Tìm hiểu về góc tạo bởi tia tiếp tuyến và dây cung
- Góc có đỉnh bên trong, góc có đỉnh bên ngoài đường tròn
- Tìm hiểu về cung chứa góc
- Tứ giác nội tiếp
- Đường tròn ngoại tiếp - Đường tròn nội tiếp
- Độ dài đường tròn
- Tìm hiểu về diện tích hình tròn
- Hình trụ - Hình nón - Hình cầu
- Ôn tập chương 2 Hình học 9
- Ôn tập chương 1 - Toán lớp 9
- Phương pháp giải bài toán so sánh hai số thực
- Biến đổi căn thức bậc hai đơn giản
- Giải phương trình , bất phương trình vô tỉ
- Chứng minh đồ thị hàm số luôn đi qua một điểm cố định
- Tìm hiểu về đồ thị hàm số y= ax + b (a ≠ 0)
- Đường thẳng song song và đường thẳng cắt nhau
- Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn
- Tìm hiểu phương pháp giải hệ phương trình
- Giải và biện luận phương trình bậc hai
- Tìm hiểu về căn bậc ba
- Tìm hiểu phương pháp tìm tập xác định của hàm số
- Tìm điều kiện để hàm số là hàm bậc nhất. Hàm số đồng biến, nghịch biến
- Tìm hiểu sơ lược về định lí vi-ét và ứng dụng
- Bài tập đại số nâng cao lớp 9
- Hệ phương trình bậc nhất hai ẩn – cách giải
- Khử mẫu - trục căn thức của biểu thức lấy căn
- VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẲNG
ÔN TẬP CHƯƠNG I
1 (trang 91 SGK Toán 9 Tập 1): Cho hình 36. Hãy viết hệ thức giữa:
a) Cạnh huyền, cạnh góc vuông và hình chiếu của nó trên cạnh huyền.
b) Các cạnh góc vuông p, r và đường cao h.
c) Đường cao h và hình chiếu của các cạnh góc vuông trên cạnh huyền p', r'
Hình 36
Trả lời:
a) p2 = p'.q ; r2 = r'.q
c) h2 = p'.r'
2 (trang 91 SGK Toán 9 Tập 1): Cho hình 37.
a) Hãy viết công thức tính các tỉ số lượng giác của góc α
b) Hãy viết hệ thức giữa các tỉ số lượng giác của góc α và các tỉ số lượng giác của góc β.
Trả lời:
b) sin α = cos β; cos α = sin β
tg α = cotg β; cotg α = tgβ
3 (trang 91-92 SGK Toán 9 Tập 1): Xem hình 37.
a) Hãy viết công thức tính các cạnh góc vuông b và c theo cạnh huyền a và tỉ số lượng giác của các góc α, β.
b) Hãy viết công thức tính mỗi cạnh góc vuông theo cạnh góc vuông kia và tỉ số lượng giác của các góc α, β.
Trả lời:
a) b = asin α = acosβ; c = asinβ = acosα
b) b = c.tgβ = c.cotgα
4 (trang 92 SGK Toán 9 Tập 1): Để giải một tam giác vuông, cần biết ít nhất mấy góc và cạnh? Có lưu ý gì về số cạnh?
Trả lời:
Để giải một tam giác vuông cần biết hai yếu tố trong đó có ít nhất là một yếu tố cạnh
Bài 33 (trang 93 SGK Toán 9 Tập 1): Chọn kết quả đúng trong các kết quả dưới đây:
a) Trong hình 41, sin α bằng:
b
Trong hình 42, sin Q bằng:
c) Trong hình 43, cos 30o bằng:
Lời giải:
a) Chọn C
b) Chọn D
c) Chọn C vì:
Bài 34 (trang 93 SGK Toán 9 Tập 1): a) Trong hình 44, hệ thức nào trong các hệ thức sau là đúng?
b) Trog hình 45, hệ thức nào trong các hệ thức sau không đúng ?
(A) sin2α + cos2α = 1
(B) sin α = cos β
(C) cos β = sin (90o – α)
Lời giải:
a) Chọn C
b) Chọn C sai
- Vì đẳng thức đúng phải là: cos β = sin(90o - β)
Bài 35 (trang 94 SGK Toán 9 Tập 1): Tỉ số giữa hai cạnh góc vuông của một tam giác vuông bằng 19: 28. Tìm các góc của nó.
Lời giải:
Kí hiệu góc như trên hình vẽ.
Tỉ số giữa hai cạnh góc vuông của một tam giác vuông là tg của góc nhọn này và là cotg của góc nhọn kia.
Giả sử α là góc nhọn của tam giác vuông đó.
Ta có:
=> α ≈ 34o10'
=> β ≈ 90o - 34o10' = 55o50'
(Lưu ý: Bạn cũng có thể sử dụng cotg để tính, nhưng cũng sẽ cho kết quả tương tự bởi vì tính chất lượng giác của 2 góc phụ nhau.)
Bài 36 (trang 94 SGK Toán 9 Tập 1): Cho tam giác có một góc bằng 45o. Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21 cm. Tính cạnh lớn trong hai cạnh còn lại (lưu ý có hai trường hợp hình 46 và hình 47).
Lời giải:
- Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.
ΔHAB cân vì có ∠B = 45o
=> HA = HB = 20
Áp dụng định lí Pitago trong ΔHAC có:
x2 = AC2 = HA2 + HC2 = 202 + 212 = 841
=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.
- Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.
ΔH'A'B' cân vì có ∠B' = 45o
=> H'A' = H'B' = 21
Áp dụng định lí Pitago trong ΔH'A'B' có:
y2 = A'B'2 = H'A'2 + H'B'2 = 212 + 212 = 2.212
=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.
Bài 37 (trang 94 SGK Toán 9 Tập 1): Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó.
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào?
Lời giải:
a) Ta có: AB2 + AC2 = 62 + 4,52 = 7,52 = BC2
nên tam giác ABC vuông tại A. (đpcm)
=> ∠B = 37o
=> ∠C = 90o - ∠B = 90o - 37o = 53o
Mặt khác trong tam giác ABC vuông tại A, ta có:
=> AH = 3,6 cm
b) Gọi khoảng cách từ M đến BC là MK. Ta có:
Ta thấy SMBC = SABC khi MK = AH = 3,6 cm
Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm