Ôn tập Chương III – Góc với đường tròn

Đây là phần 67 of 130 trong Series Toán lớp 9

A, Lý thuyết 

1. Góc ở tâm là gì?

Trả lời:

Góc ở tâm là góc có đỉnh trùng với tâm của đường tròn.

2. Góc nội tiếp là gì?

Trả lời:

Góc nội tiếp l góc có đỉnh nằm trên đường tròn, hai cạnh cắt đường tròn đó.

3. Góc tạo bởi tia tiếp tuyến và dây cung là gì?

Trả lời:

Đường thẳng xt tiếp xúc với đường tròn (O) tại điểm A thì tiếp điểm A chia tiếp tuyến xt thành hai tia đối nhau Ax và At. Mỗi tia như vậy gọi là một tia tiếp tuyến.

Góc tạo bởi một tia tiếp tuyến với một dây cung của đường tròn có một đầu mút là gốc của tia tiếp tuyến gọi là góc tạo bởi tiếp tuyến và dây cung. Ví dụ góc Bax trong hình.

Câu hỏi ôn tập chương 3 phần Hình Học 9 | Giải toán lớp 9

4. Tứ giác nội tiếp là gì?

Trả lời:

Tứ giác nội tiếp là tứ giác có 4 đỉnh nằm trên một đường tròn.

5. Với ba điểm A, B, C thuộc một đường tròn, khi nào thì

Câu hỏi ôn tập chương 3 phần Hình Học 9 | Giải toán lớp 9

Trả lời:

Câu hỏi ôn tập chương 3 phần Hình Học 9 | Giải toán lớp 9

6. Phát biểu các định lí về mối quan hệ giữa cung nhỏ và dây căng cung đó trong một đường tròn.

Trả lời:

Với hai cung nhỏ của một đường tròn hay hai đường tròn bằng nhau thì:

- Hai cung bằng nhau căng hai dây bằng nhau.

- Hai dây bằng nhau căng hai cung bằng nhau.

- Cung lớn hơn căng dây lớn hơn.

- Dây lớn hơn căng cung lớn hơn.

7. Phát biểu định lí và hệ quả về các góc nội tiếp cùng chắn một cung.

Trả lời:

Định lí: Các góc nội tiếp cùng chắn một cung thì bằng nhau.

Hệ quả: Góc nội tiếp (nhỏ hơn hoặc bằng 90o) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

8. Phát biểu định lí về góc tạo bởi tia tiếp tuyến và dây cung.

Trả lời:

Định lí thuận: Góc tạo bởi tia tiếp tuyến và dây cung có số đo bằng nửa số đo của cung bị chắn.

Định lí đảo: Một góc có đỉnh nằm trên đường tròn, một cạnh chứa dây cung, có số đo bằng nửa số đo cung căng dây đó và cung này nằm bên trong góc thì cạnh kia là một tia tiếp tuyến.

9. Phát biểu quỹ tích cung chứa góc .

Trả lời:

Quỹ tích (tập hợp) các điểm nhìn một đoạn thẳng cho trước dưới một góc α không đổi là hai cung chứa góc α dựng trên đoạn thẳng đó (0o < α < 180o).

10. Phát biểu điều kiện để một tứ giác nội tiếp được đường tròn.

Trả lời:

Một tứ giác nội tiếp được đường tròn nếu thỏa mãn một trong các điều kiện sau:

+ Tổng của hai góc đối diện bằng 180o.

+ Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.

+ Hai đỉnh kề cùng nhình cạnh nối hai đỉnh còn lại dưới góc bằng nhau.

+ Bốn đỉnh cách đều một điểm cố định.

11. Phát bểu một số dâu hiệu nhận biết tứ giác nội tiếp.

Trả lời:

Các dấu hiệu:

+ Tổng hai góc đối diện bằng 180o.

+ Góc ngoài tại một đỉnh bằng góc trong ở đỉnh đối diện.

+ Bốn đỉnh cách đều một điểm cố định.

12. Phát biểu định lí về đường tròn ngoại tiếp và đường tròn nội tiếp của đa giác đều.

Trả lời:

Định lí: Mỗi đa giác đều có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

13. Nêu cách tính số đo cung nhỏ, cung lớn.

Trả lời:

Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. Số đo của cung lớn bằng 360otrừ đi số đo của cung nhỏ cùng căng dây cung.

14. Nêu cách tính số đo của góc nội tiếp theo số đo của cung bị chắn.

Trả lời:

Số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

15. Nêu cách tính số đo của góc tạo bởi tia tiếp tuyến và dây cung theo số đo của cung bị chắn.

Trả lời:

Số đo cuả góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.

16. Nêu cách tính số đo của góc có đỉnh ở bên trong đường tròn theo số đo của các cung bị chắn.

Trả lời:

Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo các cung bị chắn.

17. Nêu cách tính số đo của góc có đỉnh ở bên ngoài đường tròn theo số đo của các cung bị chắn.

Trả lời:

Số đo của góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo của các cung bị chắn.

18. Nêu cách tính độ dài cung no của hình quạt tròn bán kính R.

Trả lời:

Độ dài l của cung no của hình quạt tròn bán kính R được tính theo công thức:

Câu hỏi ôn tập chương 3 phần Hình Học 9 | Giải toán lớp 9

19. Nêu cách tính diện tích hình quạt tròn bán kính R, cung no.

Trả lời:

Diện tích S của hình quạt tròn bán kính R, cung no được tính theo công thức:

Câu hỏi ôn tập chương 3 phần Hình Học 9 | Giải toán lớp 9

Series Navigation<< Bài 10. Diện tích hình tròn, hình quạt trònÔn tập Chương III – Góc với đường tròn ( tiếp ) >>