Lý thuyết - Sự đồng biến, nghịch biến của hàm số

Đây là phần 1 of 26 trong Series Toán 12

Lý thuyết Toán 12 chương 1: Sự đồng biến, nghịch biến của hàm số

1. Tính đơn điệu của hàm số

- Cho K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y = f(x) xác định trên K. Ta nói

+ Hàm số đồng biến (tăng) trên K nếu mọi cặp x1,x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) nhỏ hơn f(x2), tức là x1 < x2 => f(x1) < f(x2)

+ Hàm số nghịch biến (giảm) trên K nếu với mọi cặp x1,x2 thuộc K mà x1 < x2 thì f(x1) nhỏ hơn f(x2), tức là x1 < x2 => f(x1) > f(x2)

- Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là đơn điệu trên K, K được gọi chung là khoảng đơn điệu của hàm số.

Nhận xét: Hàm số đồng biến trên K thì đồ thị hàm số đi lên từ trái sang phải. Hàm số nghịch biến trên K thì đồ thị hàm số đi xuống từ trái sang phải.

 2. Tính đơn điệu và dấu của đạo hàm

- Giả sử hàm số y = f(x) có đạo hàm trên khoảng (a;b). Khi đó:

+ Nếu f'(x) ≥ 0, ∀x ∈ (a; b) và f'(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến trên (a;b).

+ Nếu f'(x) ≤ 0, ∀x ∈ (a; b) và f'(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số nghịch biến trên (a;b).

Ghi chú: Dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

Series NavigationCực trị của hàm số >>