- Toán lớp 9 học những gì?
- Lý thuyết và bài tập về Căn bậc hai số học - Toán lớp 9
- Lý thuyết và bài tập liên hệ giữa phép nhân và phép khai phương
- Chương I: Căn Bậc Hai. Căn Bậc Ba Toán sách giáo khoa lớp 9
- Bài 2 bài 3 trang 6 Sách giáo khoa Toán 9 Tập 1 Đại số
- Bài 4 và bài 5 trang 7 Sách giáo khoa Toán lớp 9 Tập 1 Đại số
- Đề kiểm tra Toán 9 Chương 1 Đại Số (Đề 1)
- Chương II. HÀM SỐ BẬC NHẤT
- Bài 2. Hàm số bậc nhất.
- Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
- Bài 4. Đường thẳng song song và đường thẳng cắt nhau.
- Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
- Ôn tập Chương II – Hàm bậc nhất
- Chương III - HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
- Bài 2. Hệ hai phương trình bậc nhất hai ẩn
- Đề kiểm tra Toán 9 Chương 1 Đại Số (Đề 2)
- Đề kiểm tra Toán 9 Chương 1 Đại số (Đề 3)
- Đề kiểm tra Toán 9 Chương 1 Đại số (Đề 4)
- Chương I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG .Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Bài 2. Tỉ số lượng giác của góc nhọn .
- Chương I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG . Bài 3. Bảng lượng giác
- Bài 4 Lý thuyết về một số hệ thức về cạnh và góc trong tam giác vuông
- Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
- Ôn tập Chương I – Hệ thức lượng giác trong tam giác vuông
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 1)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 2)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 3)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 4)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 5)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 6)
- Chương II. ĐƯỜNG TRÒN . Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
- Bài 2. Đường kính và dây của đường tròn
- Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Bài 4. Vị trí tương đối của đường thẳng và đường tròn
- Bài 6. Tính chất của hai tiếp tuyến cắt nhau
- Bài 7+8. Vị trí tương đối của hai đường tròn
- ÔN TẬP CHƯƠNG I
- ÔN TẬP CHƯƠNG I hình học
- ÔN TẬP CHƯƠNG I. Bài tập ( tiếp theo )
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 1)
- Ôn tập chương II : ĐƯỜNG TRÒN
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 2)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 3)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 4)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 5)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 1)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 2)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 3)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 4)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 5)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 6)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 8)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 9)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 10)
- Chương III - GÓC VỚI ĐƯỜNG TRÒN. Bài 1. Góc ở tâm. Số đo cung
- Bài 2. Liên hệ giữa cung và dây
- Bài 3. Góc nội tiếp
- Bài 3. Góc nội tiếp ( Bài tập tiếp )
- Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
- Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung (Bài tập tiếp theo )
- Bài 6. Cung chứa góc
- Bài 7. Tứ giác nội tiếp
- Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
- Bài 9. Độ dài đường tròn, cung tròn
- Bài 9. Độ dài đường tròn, cung tròn ( bài tập tiếp )
- Bài 10. Diện tích hình tròn, hình quạt tròn
- Ôn tập Chương III – Góc với đường tròn
- Ôn tập Chương III – Góc với đường tròn ( tiếp )
- Ôn tập chương 3 (Câu hỏi - Bài tập tiếp )
- BÀI 4 :Giải hệ phương trình bằng phương pháp cộng đại số
- BÀI 5: Giải bài toán bằng cách lập hệ phương trình
- Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
- Ôn tập chương 3; ĐẠI SỐ (Câu hỏi - Bài tập)
- Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn .Bài 1: Hàm số y = ax^2 (a ≠ 0)
- Bài 2: Đồ thị hàm số y = ax^2 (a ≠ 0)
- Bài 3: Phương trình bậc hai một ẩn ax^2+bx+c=0 (a ≠ 0)
- Bài 4. Công thức nghiệm của phương trình bậc hai
- Bài 5. Công thức nghiệm thu gọn
- Bài 6. Hệ thức Vi-ét và ứng dụng
- Bài 7. Phương trình quy về phương trình bậc hai
- Luyện tập trang 56 -57 SGK Toán 9 tập 2
- Lý thuyết và bài tập giải bài toán bằng cách lập phương trình
- Giải bài toán bằng cách lập phương trình (tiếp)
- Ôn tập chương 4 (Câu hỏi - Bài tập) sách giáo khoa lớp 9
- Chương IV: Hình Trụ - Hình Nón - Hình Cầu
- Góc ở tâm. Tìm hiểu về số đo cung, liên hệ giữa dây và cung
- Tìm hiểu về góc nội tiếp trong đường tròn
- Tìm hiểu về trí tương đối của hai đường tròn
- Tổng hợp kiến thức, dạng bài tập toán lớp 9 cơ bản (Phần đại số)
- Tính chất của hai tiếp tuyến cắt nhau
- Vị trí tương đối của đường thẳng với đường tròn. Tiếp tuyến của đường tròn
- Dạng toán tìm căn bậc hai của một số
- Định nghĩa, định lí và tính chất của đường tròn
- Tỉ số lượng giác của góc nhọn trong tam giác
- Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Giải bài toán bằng phương pháp lập phương trình
- Phương trình quy về phương trình bậc 2
- Tìm hiểu về phương trình bậc hai một ẩn số
- Hệ thức Vi-et và ứng dụng của hệ thức.
- Phương pháp giải hệ phương trình bậc 2
- Công thức nghiệm của phương trình bậc 2
- Hàm số bậc nhất
- Giải một bài toán bằng cách lập hệ phương trình
- Tìm hiểu về góc tạo bởi tia tiếp tuyến và dây cung
- Góc có đỉnh bên trong, góc có đỉnh bên ngoài đường tròn
- Tìm hiểu về cung chứa góc
- Tứ giác nội tiếp
- Đường tròn ngoại tiếp - Đường tròn nội tiếp
- Độ dài đường tròn
- Tìm hiểu về diện tích hình tròn
- Hình trụ - Hình nón - Hình cầu
- Ôn tập chương 2 Hình học 9
- Ôn tập chương 1 - Toán lớp 9
- Phương pháp giải bài toán so sánh hai số thực
- Biến đổi căn thức bậc hai đơn giản
- Giải phương trình , bất phương trình vô tỉ
- Chứng minh đồ thị hàm số luôn đi qua một điểm cố định
- Tìm hiểu về đồ thị hàm số y= ax + b (a ≠ 0)
- Đường thẳng song song và đường thẳng cắt nhau
- Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn
- Tìm hiểu phương pháp giải hệ phương trình
- Giải và biện luận phương trình bậc hai
- Tìm hiểu về căn bậc ba
- Tìm hiểu phương pháp tìm tập xác định của hàm số
- Tìm điều kiện để hàm số là hàm bậc nhất. Hàm số đồng biến, nghịch biến
- Tìm hiểu sơ lược về định lí vi-ét và ứng dụng
- Bài tập đại số nâng cao lớp 9
- Hệ phương trình bậc nhất hai ẩn – cách giải
- Khử mẫu - trục căn thức của biểu thức lấy căn
- VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẲNG
- Giải toán 9 Ôn tập chương 4 phần Hình Học
- Giải bài tập bài 3 chương 4 toán 9 (hình học)
- Giải bài tập toán bài 2 chương 4 toán 9 (hình học)
- Giải toán bài 1 chương 4 toán 9 (hình học)
- Các bài toán điển hình thi lớp 10. Bài 1: rút gọn biểu thức.
- Đề thi HK2 lớp 9 quận Long Biên 2019
Giải hệ phương trình
A. Phương pháp giải
• Bước 1: Từ một phương trình của hệ phương trình đã cho, ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại để được một phương trình mới (chỉ còn một ẩn).
Chú ý:
+ Để có lời giải đơn giản, ta thường chọn các phương trình có hệ số không quá lớn (bằng 1 hoặc -1) và biểu diễn ẩn có hệ số nhỏ hơn qua ẩn còn lại.
+ Thay một phương trình trong hệ bởi phương trình một ẩn vừa tìm ta được hệ phương trình mới tương đương với hệ phương trình đã cho.
B. Bài tập tự luận
Bài 1:
Giải các hệ phương trình sau bằng phương pháp thế:
Hướng dẫn giải
Thế (1) vào (2) ta được: x + 3(2x + 5) = 1
⇔ x + 6x + 15 = 1
⇔ 7x = -14
⇔ x = -2
Thay x = -2 vào (1) ta được y = 2.(-2) + 5 = 1
Vậy hệ phương trình có nghiệm duy nhất (-2;1)
Thế (1) vào (2) ta được: -3(2y + 4) + 6y = -12
⇔ -6y -12 + 6y = -12
⇔ 0y = 0 (luôn đúng)
Vậy hệ phương trình có vô số nghiệm (x;y) thỏa mãn x = 2y +4 và y ∈ R.
Bài 2:
Cho hàm số y = ax + b. Xác định a, b để đồ thị hàm số đi qua hai điểm M(-1; 2) và N(√3;-7).
Hướng dẫn giải:
Tương tự, hàm số y = ax + b đi qua N(√3;-7) nên ta có: -7 = √3a + b (2)
Bài 3:
Trong mặt phẳng Oxy, viết phương trình đường thẳng AB trong các trường hợp:
a) A(-1; 1) và B(2; 4)
b) A(0; -1) và B(1; 0)
Hướng dẫn giải
Gọi phương trình đường thẳng cần tìm là y=ax+b
Vì đường thẳng đi qua A(-1; 1) nên ta có: 1=-a+b (1)
Vì đường thẳng đi qua B(2;4) nên ta có: 4=2a+b (2)
Từ (1) và (2) => a = 3 và b = 4
Vậy phương trình đường thẳng cần tìm là y = 3x + 4.
b, Gọi phương trình đường thẳng cần tìm là y = ax + b
Vì đường thẳng đi qua A(0;-1) nên ta có: -1 = 0.a + b ⇔ b = -1.
Vì đường thẳng đi qua B(1;0) nên ta có: 0 = a + b (1)
Thay b = -1 vào (1) ta được a = 1
Vậy đường thẳng cần tìm là y = x - 1.
Bài 4:
a) Giải hệ phương trình với m = -2.
b) Tìm m để hệ phương trình có nghiệm nguyên.
Hướng dẫn giải