Phương trình quy về phương trình bậc nhất, bậc hai

Đây là phần 73 of 115 trong Series Toán lớp 10

Lý thuyết giải phương trình quy về phương trình bậc nhất, phương trình bậc hai

1. Giải và biện luận phương trình có dạng ax + b = 0 (1)

– Nếu a≠ 0 : (1) có nghiệm duy nhất x=ba
– Nếu a = 0; b ≠ 0; (1) vô nghiệm
– Nếu a=0; b = 0: (1) có vô số nghiệm với mọi x ∈ R.

Chú ý: Phương trình ax + b = 0 với a ≠ 0 được gọi là phương trình bậc nhất một ẩn

2. Phương trình bậc hai một ẩn ax2+bx+c=0 (a ≠ 0) (2)

Ta có: ∆ = b24ac được gọi là biệt thức của phương trình (2).

+ Nếu ∆ > 0 thì (2) có 2 nghiệm phân biệt x1,2=b±Δ−−√2a

+ Nếu ∆ = 0 thì (2) có 2 nghiệm kép x=b2a

+ Nếu ∆ < – thì (2) vô nghiệm

3. Định lí Viet của phương trình bậc 2

Nếu phương trình bậc hai ax2+bx+c=0 (a ≠ 0) có hai nghiệm x1,x2 thì

x1+x2=ba x1x2=ca

Định lí đảo Viet: Nếu hai số u và v có tổng u + v =S và tích u.v = P thì u, v là 2 nghiệm của phương trình: X2SX+P=0

4. Phương trình chứa dấu giá trị tuyệt đối

Cách giải: Đặt điều kiện xác định để loại bỏ dấu giá trị tuyệt đối.

5. Phương trình chứa dấu căn thức

Cách giải chung của phương trình chứa ẩn dưới dấu căn là chúng ta đặt điều kiện của biểu thức dưới dấu căn rồi lũy thừa hai vế phương trình để làm mất dấu căn thức.

Series Navigation<< Phương trình và hệ phương trình bậc nhất nhiều ẩnLý thuyết bất đẳng thức >>