- Toán lớp 9 học những gì?
- Lý thuyết và bài tập về Căn bậc hai số học - Toán lớp 9
- Lý thuyết và bài tập liên hệ giữa phép nhân và phép khai phương
- Chương I: Căn Bậc Hai. Căn Bậc Ba Toán sách giáo khoa lớp 9
- Bài 2 bài 3 trang 6 Sách giáo khoa Toán 9 Tập 1 Đại số
- Bài 4 và bài 5 trang 7 Sách giáo khoa Toán lớp 9 Tập 1 Đại số
- Đề kiểm tra Toán 9 Chương 1 Đại Số (Đề 1)
- Chương II. HÀM SỐ BẬC NHẤT
- Bài 2. Hàm số bậc nhất.
- Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
- Bài 4. Đường thẳng song song và đường thẳng cắt nhau.
- Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
- Ôn tập Chương II – Hàm bậc nhất
- Chương III - HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
- Bài 2. Hệ hai phương trình bậc nhất hai ẩn
- Đề kiểm tra Toán 9 Chương 1 Đại Số (Đề 2)
- Đề kiểm tra Toán 9 Chương 1 Đại số (Đề 3)
- Đề kiểm tra Toán 9 Chương 1 Đại số (Đề 4)
- Chương I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG .Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Bài 2. Tỉ số lượng giác của góc nhọn .
- Chương I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG . Bài 3. Bảng lượng giác
- Bài 4 Lý thuyết về một số hệ thức về cạnh và góc trong tam giác vuông
- Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
- Ôn tập Chương I – Hệ thức lượng giác trong tam giác vuông
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 1)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 2)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 3)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 4)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 5)
- Đề kiểm tra Toán 9 Chương 1 Hình học (Đề 6)
- Chương II. ĐƯỜNG TRÒN . Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
- Bài 2. Đường kính và dây của đường tròn
- Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Bài 4. Vị trí tương đối của đường thẳng và đường tròn
- Bài 6. Tính chất của hai tiếp tuyến cắt nhau
- Bài 7+8. Vị trí tương đối của hai đường tròn
- ÔN TẬP CHƯƠNG I
- ÔN TẬP CHƯƠNG I hình học
- ÔN TẬP CHƯƠNG I. Bài tập ( tiếp theo )
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 1)
- Ôn tập chương II : ĐƯỜNG TRÒN
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 2)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 3)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 4)
- Đề kiểm tra Toán 9 Chương 2 Hình học (Đề 5)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 1)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 2)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 3)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 4)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 5)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 6)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 8)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 9)
- Đề kiểm tra Học kì 1 Toán 9 (Đề 10)
- Chương III - GÓC VỚI ĐƯỜNG TRÒN. Bài 1. Góc ở tâm. Số đo cung
- Bài 2. Liên hệ giữa cung và dây
- Bài 3. Góc nội tiếp
- Bài 3. Góc nội tiếp ( Bài tập tiếp )
- Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
- Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung (Bài tập tiếp theo )
- Bài 6. Cung chứa góc
- Bài 7. Tứ giác nội tiếp
- Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
- Bài 9. Độ dài đường tròn, cung tròn
- Bài 9. Độ dài đường tròn, cung tròn ( bài tập tiếp )
- Bài 10. Diện tích hình tròn, hình quạt tròn
- Ôn tập Chương III – Góc với đường tròn
- Ôn tập Chương III – Góc với đường tròn ( tiếp )
- Ôn tập chương 3 (Câu hỏi - Bài tập tiếp )
- BÀI 4 :Giải hệ phương trình bằng phương pháp cộng đại số
- BÀI 5: Giải bài toán bằng cách lập hệ phương trình
- Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
- Ôn tập chương 3; ĐẠI SỐ (Câu hỏi - Bài tập)
- Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn .Bài 1: Hàm số y = ax^2 (a ≠ 0)
- Bài 2: Đồ thị hàm số y = ax^2 (a ≠ 0)
- Bài 3: Phương trình bậc hai một ẩn ax^2+bx+c=0 (a ≠ 0)
- Bài 4. Công thức nghiệm của phương trình bậc hai
- Bài 5. Công thức nghiệm thu gọn
- Bài 6. Hệ thức Vi-ét và ứng dụng
- Bài 7. Phương trình quy về phương trình bậc hai
- Luyện tập trang 56 -57 SGK Toán 9 tập 2
- Lý thuyết và bài tập giải bài toán bằng cách lập phương trình
- Giải bài toán bằng cách lập phương trình (tiếp)
- Ôn tập chương 4 (Câu hỏi - Bài tập) sách giáo khoa lớp 9
- Chương IV: Hình Trụ - Hình Nón - Hình Cầu
- Góc ở tâm. Tìm hiểu về số đo cung, liên hệ giữa dây và cung
- Tìm hiểu về góc nội tiếp trong đường tròn
- Tìm hiểu về trí tương đối của hai đường tròn
- Tổng hợp kiến thức, dạng bài tập toán lớp 9 cơ bản (Phần đại số)
- Tính chất của hai tiếp tuyến cắt nhau
- Vị trí tương đối của đường thẳng với đường tròn. Tiếp tuyến của đường tròn
- Dạng toán tìm căn bậc hai của một số
- Định nghĩa, định lí và tính chất của đường tròn
- Tỉ số lượng giác của góc nhọn trong tam giác
- Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Giải bài toán bằng phương pháp lập phương trình
- Phương trình quy về phương trình bậc 2
- Tìm hiểu về phương trình bậc hai một ẩn số
- Hệ thức Vi-et và ứng dụng của hệ thức.
- Phương pháp giải hệ phương trình bậc 2
- Công thức nghiệm của phương trình bậc 2
- Hàm số bậc nhất
- Giải một bài toán bằng cách lập hệ phương trình
- Tìm hiểu về góc tạo bởi tia tiếp tuyến và dây cung
- Góc có đỉnh bên trong, góc có đỉnh bên ngoài đường tròn
- Tìm hiểu về cung chứa góc
- Tứ giác nội tiếp
- Đường tròn ngoại tiếp - Đường tròn nội tiếp
- Độ dài đường tròn
- Tìm hiểu về diện tích hình tròn
- Hình trụ - Hình nón - Hình cầu
- Ôn tập chương 2 Hình học 9
- Ôn tập chương 1 - Toán lớp 9
- Phương pháp giải bài toán so sánh hai số thực
- Biến đổi căn thức bậc hai đơn giản
- Giải phương trình , bất phương trình vô tỉ
- Chứng minh đồ thị hàm số luôn đi qua một điểm cố định
- Tìm hiểu về đồ thị hàm số y= ax + b (a ≠ 0)
- Đường thẳng song song và đường thẳng cắt nhau
- Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn
- Tìm hiểu phương pháp giải hệ phương trình
- Giải và biện luận phương trình bậc hai
- Tìm hiểu về căn bậc ba
- Tìm hiểu phương pháp tìm tập xác định của hàm số
- Tìm điều kiện để hàm số là hàm bậc nhất. Hàm số đồng biến, nghịch biến
- Tìm hiểu sơ lược về định lí vi-ét và ứng dụng
- Bài tập đại số nâng cao lớp 9
- Hệ phương trình bậc nhất hai ẩn – cách giải
- Khử mẫu - trục căn thức của biểu thức lấy căn
- VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẲNG
- Giải toán 9 Ôn tập chương 4 phần Hình Học
- Giải bài tập bài 3 chương 4 toán 9 (hình học)
- Giải bài tập toán bài 2 chương 4 toán 9 (hình học)
- Giải toán bài 1 chương 4 toán 9 (hình học)
- Các bài toán điển hình thi lớp 10. Bài 1: rút gọn biểu thức.
- Đề thi HK2 lớp 9 quận Long Biên 2019
Cung chứa góc
A. Phương pháp giải
1. Với đoạn thẳng AB và góc α cho trước (0o < α < 180o) thì quỹ tích các điểm M thỏa mãn ∠AMB = α là hai cung chứa góc α dựng trên đoạn AB.
2. Cách giải bải toán quỹ tích.
Phần thuận: Mọi điểm có tính chất T đều thuộc hình H.
Phần đảo: Mọi điểm thuộc hình H đều có tính chất T.
Kết luận: Quỹ tích (hay tập hợp) các điểm có tính chất T là hình H.
B. Bài tập tự luận
Bài 1:
Cho ΔABC có cạnh BC cố định và ∠A = α không đổi (0o < α < 180o). Tìm quỹ tích tâm I của đường tròn nội tiếp ΔABC
Hướng dẫn giải
Vì I là tâm đường tròn nội tiếp ΔABC nên BI là phân giác của ∠B, do đó:
∠IBC = 1/2∠ABC
CI là phân giác ∠ACB, do đó: ∠ICB = 1/2 ∠ACB
Suy ra: ∠IBC + ∠ICB = 90o - α
Trong ΔBCI có ∠BIC = 180o - 1/2(∠ABC + ∠ACB)
=180o - (90o - 1/2 α) = 90o + 1/2 α
=> Điểm I nhìn đoạn thẳng BC cố định dưới một góc 90o + 1/2 α nên I thuộc cung chứa góc 90o + 1/2 α dừng trên đoạn thẳng BC (trên cùng một nửa mặt phẳng bờ BC có chứa điểm A).
* Phần đảo:
Lấy I’ thuộc cung chứa góc 90o + 1/2 α nói trên. Vẽ các tia Bx và Cy sao cho BI’ là tia phân giác của ∠CBx và CI’ là tia phân giác của góc ∠BCy. Hai tia Bx và Cy cắt nhau tại A’.
Vì I’ thuộc cung chứa góc 90o + 1/2 α dựng trên đoạn BC nên:
∠BI'C = 90o + 1/2 α
Do đó: ∠I'BC + ∠I'CB = 180o - ∠BIC = 90o - 1/2α
Vì BI’ là phân giác của ∠A'BC và CI’ là phân giác của ∠A'CB nên
∠A'BC + ∠A'CB = 2(∠I'BC + ∠I'CB) = 180o - α
Mặt khác I’ là giao điểm các tia phân giác của ∠A'BC và ∠A'CB nên I’ là tâm đường tròn nội tiếp ΔA'BC
Kết luận: Quỹ tích tâm I của đường tròn nội tiếp ΔABC là cung chứa góc 90o + 1/2 α dựng trên đoạn BC.
Bài 2:
Cho đường tròn (O) và điểm A cố định nằm trong đường tròn . Một đường thẳng d quay quanh điểm A cắt đường tròn (O) tại hai điểm M và N. Tìm quỹ tích trung điểm I của MN.
Hướng dẫn giải
Vì I là trung điểm của dây MN suy ra OI ⊥ MN Do đó ∠OIA = 90o
Vì điểm I nhìn đoạn OA cố định dưới góc 90o nên I nằm trên đường tròn đường kính OA.
* Phần đảo:
Lấy điểm I’ bất kỳ thuộc đường tròn đường kính OA.
Nối AI’ cắt đường tròn (O) tại M’ và N’
Vì I’ thuộc đường tròn đường kính OA nên ∠OI'A = 90o hay OI' ⊥ M'N'
Suy ra I’ là trung điểm của M’N’ (theo quan hệ giữa đường kính và dây cung)
Kết luận: Quỹ tích trung điểm I của MN là đường tròn đường kính OA.
Bài 3:
Dựng ΔABC biết BC = 8cm; ∠A = 60o và trung tuyến AM = 5cm.
Hướng dẫn giải
* Phân tích:
Giả sử đã dựng được ΔABC thỏa mãn yêu cầu đề bài.
Vì ∠BAC = 60o nên A thuộc cung đường tròn chứa góc 60o dựng trên đoạn BC.
Lại có: AM = 5cm, nên A thuộc đường tròn tâm M, bán kính 5cm.
* Cách dựng:
Dựng đoạn thẳng BC = 8cm. Xác định trung điểm M của BC.
Dựng cung chứa góc 60o trên đoạn thẳng BC.
Dựng đường tròn tâm M, bán kính 5cm. Gọi giao điểm của cung chứa góc và đường tròn (M, 5cm) là A và A’.
Ta có hai tam giác ABC và A’BC đều thỏa mãn đề bài.
* Chứng minh:
Vì A thuộc cung chứa góc 60o dựng trên đoạn BC nên ∠A = 60o
Lại có: A thuộc đường tròn (M, 5cm) nên AM = 5cm.
BC = 8cm theo cách dựng.
* Biện luận:
Bài toán luôn có nghiệm hình.
Bài 4:
Cho nửa đường tròn (O) đường kính AB, có C là điểm chính giữa của cung AB. M là một điểm chuyển động trên cung BC . Lấy điểm N thuộc đoạn AM sao cho AN = MB. Vẽ tiếp tuyến Ax với nửa đường tròn; D là điểm thuộc Ax sao cho AD = AB .
a) Chứng minh rằng ΔMNC vuông cân.
b) Chứng minh rằng DN ⊥ AM
c) Tìm quỹ tích điểm N.
Hướng dẫn giải
a) Ta có: ΔANC = ΔBMC (c.g.c)
Do đó: CN = CM
Lại có: ∠CMA = 1/2 SđAC = 1/2 .90o = 45o
Từ (1) và (2) suy ra ΔMNC vuông cân tại C.
b) Xét ΔAND và ΔBMA có:
+ AD = AB
+ ∠DAN = ∠ABM
+ AN = BM (gt)
=> ΔAND = ΔBMA do đó ∠AND = ∠BMA .
Mà ∠BMA = 90o (góc nội tiếp chắn nửa đường tròn)
Suy ra ∠AND = 90o hay DN ⊥AM.
c) * Phần thuận:
Vì ∠AND = 90o N nhìn đoạn AD cố định dưới một góc 90o nên N thuộc đường tròn đường kính AD.
Giới hạn: Nếu M ≡ A thì N ≡ C, nếu M ≡ C thì N ≡ A do đó quỹ tích điểm N là cung nhỏ AN của đường tròn đường kính AD (cung này thuộc nửa mặt phẳng bờ là đường thẳng Ax có chứa nửa đường tròn (O)).
* Phần đảo: Học sinh tự chứng minh.